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Abstract: The application of Hidden Markov Models (HMMs) in the study of genetic and neurological disorders has shown
significant potential in advancing our understanding and treatment of these conditions. This review assesses 77 papers selected
from a pool of 1,105 records to evaluate the use of HMMs in disease research. After the exclusion of duplicate and irrelevant
records, the papers were analyzed for their focus on HMM applications and regional representation. A notable deficiency was
identified in research across regions such as Africa, South America, and Oceania, emphasizing the need for more diverse and
inclusive studies in these areas. Additionally, many studies did not adequately address the role of genetic mutations in the
onset and progression of these diseases, revealing a critical research gap that warrants further investigation. Future research
efforts should prioritize the examination of mutations to deepen our understanding of how these changes impact the development
and progression of genetic and neurological disorders. By addressing these gaps, the scientific community can facilitate the
development of more effective and personalized treatments, ultimately enhancing health outcomes on a global scale. Overall,
this review highlights the importance of HMMs in this area of research and underscores the necessity of broadening the scope of
future studies to include a wider variety of geographical regions and a more comprehensive investigation of genetic mutations.
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1. Introduction

Genetic, neurological, and related disorders pose significant
challenges in modern healthcare, affecting a vast number
of the global population and placing substantial burdens
on healthcare systems worldwide [1–3]. These conditions
encompass a broad number of disorders, ranging from
rare genetic syndromes to common neurological diseases,
each characterized by a complex interplay of genetic
predispositions, environmental influences, and neurobiological
mechanisms [4, 5]. Understanding the underlying molecular
and phenotypic variability is crucial for achieving effective
diagnosis, treatment, and management, yet the multifaceted
nature of these conditions poses considerable challenges for
both clinicians and researchers.

In this context, systematic reviews emerge as indispensable
tools for synthesizing existing evidence, identifying gaps
in knowledge, and informing clinical practice and research
agendas. By systematically collating and analyzing a
vast array of research studies, systematic reviews enable
researchers to distill complex information, evaluate the
strength of evidence, and derive meaningful conclusions to
guide decision-making.

Furthermore, Hidden Markov Models (HMMs), a robust
statistical framework rooted in signal processing and machine
learning, have garnered growing acknowledgment within
biomedical research circles. Their efficacy lies in their
adeptness at modeling sequential data and elucidating
concealed states within intricate systems [6]. This recognition
stems from their capacity to analyze and interpret dynamic
biological processes, thereby offering valuable insights into
the complexities of biological phenomena [7, 8]. Moreover,
a significant benefit of HMMs lies in their capacity to
represent the unpredictable progression of diseases [9]. By
integrating probabilistic shifts between states of illness, these
models can accommodate the inherent unpredictabilities and
fluctuations in disease trajectories. This feature holds
particular significance in the modeling of intricate diseases
characterized by various potential outcomes and diverse
clinical pathways [10].

As researchers delve deeper into the realm of bioinformatics
and computational biology, the application of HMMs
continues to expand, showcasing their potential to
revolutionize the understanding and interpretation of
biomedical data. Therefore, in the area of genetics
and neuroscience, HMMs offer a versatile approach for
deciphering the underlying patterns and dynamics governing
disease progression, treatment response, and clinical
outcomes.

The aim of this systematic literature review is to investigate
and assess the utilization of Hidden Markov Models (HMMs)
in genetic disorders, neurological disorders, and associated
condition studies. Especially, it aims to pinpoint areas
where knowledge is lacking, offering insights that can steer
forthcoming research endeavors and practical applications.

Through this review, we answer the question: What is the
current status of research regarding the use of HMMs in the
study of genetic disorders, neurological disorders, and related
conditions?

2. Methodology

2.1. Description of the Review Process

To validate the necessity of this systematic review, an
initial search was performed on the Cochrane Database of
Systematic Reviews (CDSR) and Prospero, in accordance with
the guidelines of the Center for Reviews and Dissemination.
No existing or ongoing systematic reviews were found on the
subject of this study.

We then utilized the PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analysis) method for
gathering data, which involved identifying the necessary
data sources, screening, and verifying data eligibility. Using
Databases such as PubMed, Scopus, Web of Science, and
Google Scholar, we searched for articles related to the use of
Hidden Markov Models for Genetic Disorders, Neurological
Disorders, Cancer, and Tumors from 2012 to 2023. The
keywords used were: “Hidden Markov Model”, “Genetic
disorder”,“Cancer”, “Tumors”, “Neurological disorder”,
“Mutations”, “Nerve”, “nervous system”, “Muscle”,
“Alzheimer’s disease (AD)”, “Amyotrophic lateral sclerosis”,
“Angelman syndrome”, “Autism spectrum disorder”, “Beta-
thalassemia”, “Breast cancer”, “Cerebellar ataxia”, “Cervical
cancer”, “Chronic lymphocytic leukemia”, “Cognitive
impairment”, “Colon cancer”, “Congenital hypothyroidism”,
“Cystic fibrosis”, “Diffuse large B-cell lymphoma”, “Down
syndrome”, “Duchenne muscular dystrophy”, “Fragile X
syndrome”, “Friedreich’s ataxia”, “Glaucoma”, “Glutaric
acidemia type 1”, “Glioma”, “Hepatocellular carcinoma”,
“Huntington’s disease”, “Hypoparathyroidism”, “Lactic
acidosis”, “Leukemia”, “Lung cancer”, “Mitochondrial
disease”, “Malignant lymphoma”, “Methylmalonic acidemia”,
“Mitochondrial myopathy”, “Myelodysplastic syndromes”,
“Niemann-Pick disease type C”, “Parkinson’s disease”,
“Pancreatic cancer”, “Precancerous lesions”, “Prader-Willi
syndrome”, “Prostate cancer”, “Sickle cell disease”, “Smith-
Magenis syndrome”, “Spinocerebellar ataxia type 1”,
“Spinocerebellar ataxia type 3”, “Syndromic form DOA
’plus”’, “Tay-Sachs disease”.

Furthermore, a standardized data extraction template was
created to systematically gather pertinent information from
the chosen studies. The collected data underwent analysis
and synthesis to recognize prevalent themes, trends, and
patterns among the chosen studies. Notable discoveries
were condensed to offer an extensive overview of the
existing understanding regarding the applications, constraints,
and prospective avenues for additional investigation utilizing
Hidden Markov Models in the examination of genetic
disorders, neurological disorders, and associated conditions.
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2.2. Inclusion and Exclusion Criteria

Table 1. Inclusion and Exclusion Criteria.

Feature Inclusion Criteria Exclusion Criteria

Model used Research related to the application, development, or extinction of Research not related to Hidden Markov Models

Hidden Markov Models

Area of the study Studies within genetic disorders, neurological conditions, Cancer, Studies not related to genetic disorders, neurological conditions, Cancer,

and Tumors or Tumors

Quality of the Research disseminated through peer-reviewed academic journals, Studies lacking peer-reviewed validation, credible sourcing, methodological

study conference presentations, or credible scientific outlets robustness, transparent dissemination, or affiliation with reputable scientific channels

Period Studies published between 2012 and 2023 Research published prior to 2012 or subsequent to 2023

3. Results and Discussions
The PRISMA Diagram is:

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Diagram.

3.1. HHM-related Papers by Disease Category over Time

Figure 2 below presents the number of Hidden Markov
Model (HMM)-related papers published annually across
different disease categories (genetic disorders, neurological
disorders, cancer, and tumors), providing insights into the
utilization of HMMs over twelve years.

A total of 77 papers were published over the specified
period, suggesting a significant body of research focused
on applying HMMs to those conditions. There appears

to be variability in the number of HMM-related papers
published each year. For example, there’s a noticeable
increase in the total number of papers from 2018 to 2020,
with a peak of 14 papers in 2020. Moreover, Neurological
disorders seem to be the most extensively studied, with 31
papers dedicated to this category. This could be attributed
to the complexity and diversity of neurological conditions,
which present rich opportunities for applying HMMs to
model disease progression, patient trajectories, and treatment
outcomes.
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Figure 2. Number of Hidden Markov Model-related papers by year and disease category.

The relatively lower number of papers in certain disease
categories, such as genetic disorders and genetic and
neurological disorders, suggests potential research gaps or
areas with less explored applications of HMMs. Identifying
and addressing these gaps could lead to novel insights and
advancements in understanding the underlying mechanisms
of these diseases and improving diagnostic and therapeutic
approaches.

3.2. HMM-related Papers by Geographic Location

The distribution of Hidden Markov Model (HMM) related
papers across various countries highlights the global interest
and engagement in this field of study. The following map
(Figure 3) presents the number of HMM-related papers by
country around the world.

Figure 3. Number of Hidden Markov Model-related papers by country.

Leading the pack, the United States emerges as the dominant
contributor with 27 papers, showcasing its strong research
infrastructure and expertise in HMM applications. Following
closely behind, Iran demonstrates significant activity with
7 papers, indicating a burgeoning interest and investment

in this area. India also makes a notable contribution with
6 papers, underscoring its growing prominence in scientific
research. Other countries such as China, Japan, and the
United Kingdom display substantial engagement with 4, 3, and
5 papers respectively, reflecting diverse geographical centers
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of HMM-related research. While some nations like Canada,
Italy, France, and Taiwan demonstrate moderate involvement
with 2 papers each, several countries register a single paper,
indicating a smaller but still present level of interest. Overall,
this data underscores the global nature of HMM research, with
various countries actively contributing to advancements in this
statistical modeling technique across a range of disciplines.

3.3. Synthesis of the Use of HMM in Genetic Disorders
Studies

The complete designations for the abbreviated terms are
provided within the Appendix, specifically referenced in
Abbreviations.

The following table (Table 2) provides an overview of
studies that employed HMM to investigate genetic disorders.

Table 2. Hidden Markov Model used for Genetic Disorders.

Author(s) Year Geographic Population or Model used Disease(s) Related to Type of mutation

location sample mutation

Emerson A. C. et al. [11] 2020 Portugal 1,500 families 3-state HMM ASD No

Knudson K., Gupta A. [12] 2022 United States 60 people AR-HMM SCA1, SCA3, and No

FRDA

Sukkar R., Katz E. et al. [9] 2012 United States 120 patients with Unsupervised AD Yes Amyloid beta (Aβ)

AD HMM

Nayarisseri A., et al. [13] 2013 India 100 patients eXome HMM CF, HD, SCD Yes Amino acid seq.

Chenna R. G. et al. [14] 2014 20 tissues HMM PWS and AS Yes CNV

Safca et al. [15] 2017 Morocco 100 patients HMM SCD Yes Hemoglobin S

Li Y., et al. [16] 2015 China 8 families HMM DMD Yes DMD exons

Chen D., et al. [17] 2020 China 13 families HMM DMD Yes DMD exons

Simona K. Z. et al. [18] 2021 United Kingdom 24 PWS-cr m+/p-, HMM PWS Yes PWS-cr region

31 wild mice

Narita K., et al. [19] 2022 Japan 177 patients HMM AS, CH, DMD, Yes SNVs and CNVs

FXS, GAT1, MMA,

MPC, PWS, SMS

Frohlich J., et al. [20] 2022 United States 105 AS, 30 Time Delay AS and Dup15q Yes Deletions of

Dup15q, 40 NT Embedded HMM 15q11.2-q13.1

in AS and Dup15q

Fechner R., et al. [8] 2023 Multivariate HMM SCA3 Yes TNR

The table underlines the collective efforts of researchers
worldwide, showcasing the versatility and applicability of
HMMs in genetic research. For instance, studies such as those
by Emerson A. C. et al. [11] in Portugal, Knudson K., Gupta
A. [12] in the United States of America, Nayarisseri A., et al.
[13] in India, and Li Y., et al. [16] in China, among others,
highlight the global reach of HMM-based genetic analysis.
These studies delve into diverse genetic disorders, including
Autism Spectrum Disorder (ASD), Alzheimer’s Disease (AD),
Cystic Fibrosis (CF), Huntington’s Disease (HD), and others,
underscoring the broad spectrum of diseases that can be
studied using HMMs. Moreover, Studies such as Sukkar R.,
Katz E., et al. [9] in the United States of America, Safca, et
al. [15] in Morocco, Chenna R. G., et al. [14] investigating
Prader-Willi Syndrome (PWS) and Angelman Syndrome (AS),
and Narita K., et al. [19] in Japan, explore mutations such
as Amyloid beta (Aβ), Hemoglobin S, Copy Number Variants
(CNVs), Single Nucleotide Variants (SNVs), and trinucleotide
repeats (TNR).

3.4. Synthesis of the Use of HMM in Neurological
Disorders Studies

3.4.1. Papers Not Directly Related to Mutations in
Neurological Disorders Studies

The table below offers a comprehensive overview of studies
not directly related to mutations, focusing on neurological
disorders, employing Hidden Markov Models (HMM) across
different geographic regions and populations.

These studies represent a diverse range of research efforts
aimed at understanding and diagnosing various neurological
conditions. For example, Chen Y., Pham T. [21] in the United
States, Houmani N., et al. [22] in France, and Martinez-Murcia
F., et al. [27] in the United States investigated Alzheimer’s
Disease (AD) utilizing HMMs with different methodologies
and study populations. Similarly, studies by Severson K.
A., et al. [33] in the United States focused on Parkinson’s
Disease (PD), while Abed Khorasani M. et al. [26] in Iran
explored Amyotrophic Lateral Sclerosis (ALS) using Factorial
HMMs (FHMM). Furthermore, the table encompasses studies
examining other neurological conditions such as Glaucoma,
Mild Cognitive Impairment (MCI), and Cerebellar Ataxias
(CAs). Furthermore, the utilization of various HMM variants,
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including Continuous-Time HMMs (CT-HMMs), Factorial
HMMs, Semiparametric mixed HMMs, and Hierarchical
Bayesian multistate HMMs, reflects the adaptability of HMMs
in modeling complex neurological processes. The table also

highlights the importance of large-scale data analysis, with
studies like Williams J., Storlie C., et al. [36] in the United
States and Ceritli T., et al. [41] in the United Kingdom
involving thousands of AD and PD patients, respectively.

Table 3. Synthesis of papers not related to mutations in neurological disorders studies.

Author(s) Year Geographic

location

Population or sample Model used Disease(s)

Chen Y., Pham T. [21] 2013 United States 100 individuals HMM AD

Houmani N., et al. [22] 2013 France 50 AD patients and 50 healthy HMM AD

Liu Y., et al. [23] 2015 United States Continuous-Time HMM (CT-HMM) Glaucoma and

AD

Houmani N., Dreyfus G., Vialatte F. 2015 France 112 AD patients and 112 healthy HMM AD

B. [24]

Wang W., Wu H., and Chung P. [25] 2015 Taiwan 42 AD patients and 64 healthy HMM AD

Abed Khorasani M. et al. [26] 2016 Iran 16 healthy and 13 ALS subjects Factorial HMM (FHMM) ALS

Martinez-Murcia F., et al. [27] 2016 United States 261 AD patients HMM AD

Seltman H., Mitchell S., Sweet R. 2016 United States 434 AD patients HMM AD

[28]

Benoit J., Chan W., Luo S., Yeh H., 2016 United States 100 AD patients CT-HMM AD

and Yang Y. [29]

Liu Y., Moreno A., Li, S., Li F., and 2017 Multiple countries CT-HMM Glaucoma and

Song L. [30] AD

Sitnikova T. A, et al. [31] 2018 United Kingdom 26 AD patients and 26 healthy HMM AD

Kang K., Cai J., Song X., Zhu H. 2019 United States 1,988 AD patients Semiparametric mixed HMM AD, MCI

[32] (BSMHM2)

Severson K. A., et al. [33] 2020 United States 2,462 PD patients Personalized Input-Output HMM PD

Mancy K. M. et al. [34] 2020 India 200 PD patients HMM PD

Jamaloo F., Mikaeili F., Noroozian 2020 Iran 7 MCI patients and 7 healthy Continuous HMM (CHMM) AD

M. [35]

Williams J., Storlie C.et al. [36] 2020 United States 4,742 AD patients Hierarchical Bayesian multistate HMM AD

Naranjo L., et al. [37] 2020 Spain 100 PD patients Inhomogeneous HMM with continuous PD

state-space

Baucum M., Khojandi A., and 2021 United States 1,000 AD patients HH recurrent neural network (HMRNN) AD

Papamarkou T. [38]

Roth N., KÃ 1
4 derle A. et al. [39] 2021 Erlangen, Germany 28 PD patients HMM PD

VyÅ¡ata O. Et al. [40] 2021 Czech Republic 23 ataxic, 20 healthy HMM CAs

Ceritli T., et al. [41] 2022 United Kingdom 1,500 PD patients Mixture of input-output HMM PD

(mIOHMMs)

Shankar V., Sisodia D., Chandrakar 2023 United States 1,514 AD patients CT-HMM AD

P. [42]

Li C., Li Y., Tao Y., et al. [43] 2023 23 AD patients, 54 MCI patients, HMM AD, MCI

and 217 healthy

3.4.2. Papers Related to Mutations in Neurological
Disorders Studies

The table presents a collection of papers (related to
mutations) exploring various aspects of neurological disorders

through the lens of Hidden Markov Models (HMMs).
These studies offer insights into the complex dynamics
of neurological diseases and their underlying mechanisms,
providing valuable contributions to the field.
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Table 4. Synthesis of papers related to mutations in neurological disorders studies.

Author(s) Year Geographic Population or Model used Disease(s) Type of mutation

location sample

Li A., Wang. M., et al. [44] 2017 China 100 healthy HMM CNV Gain or loss of genetic

individuals material

Zhou X., Kang K., Song X. [45] 2020 United States 1,088 patients Two-part HMM AD APOE ε4 mutation, SNP

Wijeratne P., Alexander D. [46] 2020 United States 1,037 AD patients Event-Based HMM (EBMM) AD Amyloid-beta plaques and

tau tangles

Baucum M., Khojandi A., 2020 United States 1,500 AD patients HM recurrent neural network AD Single point mutation

Papamarkou T. [47] (HMRNN)

Lin Y., Song X. [48] 2022 N/A N/A Regression-based HMM (RHMM) AD SNPs

Liu H., Song X., Zhang B. [49] 2022 United States 685 AD patients Varying-coefficient HMM AD APOE ε4 allele

(VC-HMM)

Nagarajan D., et al. [50] 2023 United States 100 AD patients Neutrosophic HMM (NHMM) AD and APP gene

MCI

Zou Y., Lin Y., Song X. [51] 2023 United States 1,117 patients Heterogeneous HMM (HMM) AD SNP

Li A., Wang. M., et al. [44] conducted a study in
China involving 100 healthy individuals, utilizing HMM to
analyze Copy Number Variations (CNVs) and their potential
implications, such as gain or loss of genetic material.
Similarly, Zhou X., Kang K., Song X. [45] in the United
States employed a Two-part HMM to investigate Alzheimer’s
Disease (AD), focusing on mutations like the APOE ε4 allele
and Single Nucleotide Polymorphisms (SNPs) in a sample of
1,088 patients. Other studies, such as Wijeratne P., Alexander
D. [46] and Baucum M., Khojandi A., Papamarkou T. [47],
delved into AD using Event-Based HMM (EBMM) and HM

recurrent neural network (HMRNN), respectively, to explore
factors like amyloid-beta plaques, tau tangles, and single point
mutations. Furthermore, the table includes investigations
utilizing innovative HMM variants, such as Regression-based
HMM (RHMM) by Lin Y., Song X. [48], Varying-coefficient
HMM (VC-HMM) by Liu H., Song X., Zhang B. [49],
Neutrosophic HMM (NHMM) by Nagarajan D., et al. [50],
and Heterogeneous HMM (HMM) by Zou Y., Lin Y., Song
X. [51], to study AD and Mild Cognitive Impairment (MCI)
through various perspectives.

3.5. Synthesis of the Use of HMM in Conditions both Genetic and Neurological

Table 5. Synthesis of papers related to conditions both genetic and neurological.

Author(s) Year Geographic Population or Model used Disease(s) Related to Type of mutation

location sample mutation

Mannini A., et al. [52] 2015 Italy 60 patients HMM HD No

Mannini A., et al. [53] 2016 Italy 100 patients HMM HD, Post-stroke No

Olson D., Wheeler W. [54] 2018 N/A N/A HMM HD, FXS No

Kwon B. C., et al. [55] 2020 United States N/A HMM HD, PD, T1D No

Sun Z., Ghosh S., et al. [56] 2019 United States 1,890 HD patients Continuous-Time HD Yes HTT gene mutation

HMM (CT-HMM)

The table presents a synthesis of studies utilizing Hidden
Markov Models (HMMs) in conditions that are both genetic
and neurological. The study of Mannini A., et al. [52] and
Mannini A., et al. [53] conducted in Italy focused on HD
and post-stroke patients, respectively, utilizing HMMs. These
studies aimed to uncover patterns and dynamics within patient
data, despite not explicitly focusing on genetic mutations.
Similarly, the research conducted by Olson D., and Wheeler
W. [54] included HD and FXS, employing HMMs to analyze
data related to these conditions. This study explored temporal
patterns or disease progression dynamics using HMMs,

although genetic mutations were not explicitly addressed.
Furthermore, the study of Kwon B. C., et al. [55] in the
United States of America involved HD, PD, and T1D, utilizing
HMMs. While these studies explored temporal dynamics
or patient trajectories, genetic mutations were not explicitly
studied or addressed in the context of HMM analysis. On the
other hand, the study conducted by Sun Z., Ghosh S., et al.
[56] in the United States of America focused on HD patients
and utilized Continuous-Time HMM (CT-HMM). This study
explicitly addressed genetic mutations by focusing on the HTT
gene mutation, which is implicated in HD.
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3.6. Synthesis of the Use of HMM in Cancer and Tumors Studies

3.6.1. Papers Not Directly Related to Mutations in Cancer and Tumor Studies

Table 6. Synthesis of papers not related to mutations in cancer and tumor studies.

Author(s) Year Geographic

location

Population or sample Model used Disease(s)

Madadizadeh F., et al. [57] 2015 Iran 900 breast cancer patients HMM Breast cancer

Hosaini S. S., Emadi M. [58] 2015 Iran 150 mammogram images HMM Breast Cancer

Mahmoudzadeh E. et al. [59] 2015 Iran 200 images Extended HMM Breast cancer

Mukhopadhyay S., et al. [60] 2016 India 100 cervical tissue samples HMM Cervical cancer

Amoros, R. et al. [61] 2019 Japan 1,524 patients Continuous-Time HMM (CT-HMM) HCC

Li W., Denton B. T. et al. [62] 2020 United States, 9,021 patients HMM Pca

Canada

Wolfs J. et al. [63] 2020 Canada and The 483 fractions from 24 patients treated with HMM Lung cancer

Netherlands 3D-CRT or IMRT, and 263 fractions from 30

patients treated with VMAT or hybrid plans

Ludwig R., et al. [64] 2021 Switzerland 1,000 HNSCC patients HMM HNSCC

Meng R., et al. [65] 2022 Norway 41 women with cervical cancer Hierarchical continuous-time Cervical cancer

inhomogeneous HMM(HCT-iHMM)

Nuka N., Ofor D. [66] 2022 Nigeria 200 images (100 benign and 100 malignant) HMM Cancer

The table presents papers that explore various aspects of
cancer and tumor studies utilizing Hidden Markov Models
(HMMs), and not taking into account the mutation aspect.
These studies analyzed different aspects of cancer pathology,
diagnosis, and treatment across diverse geographic locations
and populations. For instance, Madadizadeh F., et al. [57]
and Hosaini S. S., Emadi M. [58] conducted studies in Iran
focusing on breast cancer. Madadizadeh et al. utilized
HMM to predict outcomes in 900 breast cancer patients, while
Hosaini and Emadi employed HMM to analyze mammogram
images for breast cancer diagnosis. Similarly, Mahmoudzadeh
E. et al. [59] utilized Extended HMM to analyze images in
the context of breast cancer diagnosis. Mukhopadhyay S.,
et al. [60] in India explored cervical cancer using HMMs to
analyze cervical tissue samples. Furthermore, studies such as
Amoros, R. et al. [61] in Japan focused on Hepatocellular
Carcinoma (HCC) using Continuous-Time HMM (CT-HMM),
while Li W., Denton B. T. et al. [62] in the United States
and Canada investigated Prostate Cancer (Pca) utilizing HMM.
Other studies in the table include research on lung cancer by
Wolfs J. et al. [63] in Canada and The Netherlands, Head and
Neck Squamous Cell Carcinoma (HNSCC) by Ludwig R., et
al. [64] in Switzerland, and cervical cancer by Meng R., et
al. [65] in Norway, all employing HMMs to analyze different
aspects of cancer pathology and treatment. Additionally, Nuka
N., Ofor D. [66] in Nigeria explored cancer diagnosis using
HMM to analyze images for distinguishing between benign
and malignant tumors.

These studies collectively highlight the versatility of
HMMs in cancer research, showcasing their utility in
analyzing various data types, including patient outcomes,
medical images, and treatment plans. By employing
HMMs, researchers can gain valuable insights into cancer

pathology and develop more effective diagnostic and
therapeutic strategies, ultimately contributing to improved
patient outcomes and personalized cancer care.

3.6.2. Papers Related to Mutations in Cancer and Tumor
Studies

The table provides an overview of papers related to
mutations in cancer and tumor studies, showcasing the
application of Hidden Markov Models (HMMs).For instance,
Shihab H. et al. [67] conducted a study in the United
Kingdom focusing on predicting mutations in 1,000 human
genes associated with cancer, heart disease, and diabetes using
HMM with Dirichlet mixtures. Similarly, Bonneville R., Jin
X. V. [68] in the United States utilized HMM to analyze
mutations in breast cancer, particularly focusing on the ERα
gene. Furthermore, several studies like Mayilvaganan M.,
et al. [70] in India and Seifert A., et al. [71] in the
United States investigated mutations in liver cancer and breast
cancer/glioma, respectively, using HMMs. These studies
targeted mutations such as Single Nucleotide Polymorphisms
(SNPs) and gene Copy Number Alterations (CNAs) to
elucidate their role in cancer development and progression.
Moreover, the table includes studies employing innovative
HMM variants, such as Bayesian HMM with Gaussian
Mixture Clustering by Manogaran G., et al. [77] in Taiwan
and HMM with Multinomial Mixture Model by Emdadi A.
and Eslahchi C. [81], aiming to identify mutations in cancer
cells and understand their implications. Additionally, studies
like Wojtowicz D., et al. [78] in the United States and
Momenzadeh M., et al. [79] in Iran explored mutations
in breast cancer, pancreatic cancer, and leukemia using
HMMs, shedding light on the genetic factors underlying these
malignancies.
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Table 7. Synthesis of papers related to mutations in cancer and tumor studies.

Author(s) Year Geographic Population or sample Model used Disease(s) Type of
location mutation

Shihab H. et al. [67] 2013 United Kingdom 1,000 human genes HMM with Dirichlet Cancer, heart disease, and MM

mixtures diabetes

Bonneville R., Jin X. V. [68] 2013 United States HMM Breast cancer ERα

Shihab H., et al. [67] 2013 Worldwide 318,476 genomes HMM Cancer MM

Eric L. Seiser [69] 2014 United States 100 samples HMM DLBCL, breast cancer SCNA

Mayilvaganan M., et al. [70] 2014 India 100 patients HMM Liver cancer SNP

Seifert A., et al. [71] 2014 United States 296 breast cancer patients Autoregressive higher-order Breast cancer and glioma Gene

and 104 glioma patients HMM CNA

Nguyen T., et al. [72] 2015 Australia 62 breast cancer patients and HMM Cancer SNP

62 colon cancer patients

Sasikumar R., Kalpana V. [73] 2015 N/A 50 cancer seq. Profile HMM Cancer RIP

Yu X., Sun S. [74] 2016 China 100 breast cancer patients HMM Breast cancer CGM,

SNP

and 100 healthy

Cosma G., et al. [75] 2017 UK 11,806 patients HMM PCa Gene

Mukhopadhyay S. et al. [76] 2018 India 100 cervical tissue samples HMM Cervical cancer and p53 gene

precancerous lesions

Manogaran G., et al. [77] 2018 Taiwan 1,000 breast cancer patients Bayesian HMM with Cancer DNA

Gaussian Mixture

Clustering

Wojtowicz D., et al. [78] 2019 United States 1,000 breast cancer tumors HMM Breast cancer, pancreatic RIP

cancer, CLL, malignant

lymphoma

Momenzadeh M., et al. [79] 2019 Iran 323 patients HMM Leukemia cancer, DLBCL SNP

and Pca

Momenzadeh M., et al. [80] 2020 US, Iran 332 genes (breast cancer) HMM Breast cancer SNP

Emdadi A. and Eslahchi C. [81] 2021 N/A 12,397 cancer cell HMM with Multinomial Cancer SPG

Mixture Model

Laxmi V. [82] 2021 India 800 patients HMM with Gaussian Breast cancer, lung cancer, DNA

Mixture clustering and colon cancer.

Ikesu R., et al. [83] 2022 Japan 729 CIN patients HMM CIN and cervical cancer. HPV

Shokoohi F., Khaniki S. H. [84] 2023 United States 1,000 cancer samples HMM Cancer HPV

4. Conclusion

The analysis carried out via the systematic review of the
application of Hidden Markov Models in modeling genetic
diseases, neurological disorders, and associated conditions has
unveiled a significant research gap, particularly concerning
the African continent. Among the 77 studies meeting the
criteria for inclusion, only two focused on investigating
these diseases within an African context (Morocco and
Nigeria), showing a clear lack. Similar limitations in research
representation were found for South America and Oceania.
This emphasizes the need for increased research endeavors
in these regions, acknowledging the crucial role of robust
health research in addressing prevalent health disparities and
enhancing healthcare outcomes. Furthermore, although certain
continents exhibit relatively higher publication rates, the
overall quantity of publications remains low, over the entire
11-year period covered by this review. This underscores the
persistent requirement for sustained investment and dedication
to research globally, ensuring a more equitable dissemination
of scientific knowledge and advancements in the realm of

genetic and neurological disorders, and related conditions.
Additionally, a crucial aspect highlighted by the review is

that more than half of the studies are not related to mutations.
Out of the 77 studies analyzed, a significant 39 were
conducted without an exploration of the role and implications
of mutations in these diseases. Even among the remaining 38
studies that acknowledged mutations, the analysis depth was
shallow. This underscores a significant gap in current research
efforts, as mutations are fundamental to the pathophysiology
and etiology of genetic disorders, neurological conditions,
and related conditions. Therefore, there is a need for future
research initiatives to prioritize integrating mutation modeling
into their investigative frameworks. Such efforts hold great
promise in advancing understanding the intricate interplay
between genetic variations and disease manifestations, as
well as in informing the development of targeted intervention
strategies and personalized treatment approaches. By
addressing this critical research gap, the scientific community
can significantly enhance its ability to tackle the multifaceted
challenges posed by genetic diseases, neurological disorders,
and related conditions, ultimately leading to improved health
outcomes and a better quality of life for individuals globally.
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Abbreviations
.

AD Alzheimer’s disease
ALS Amyotrophic lateral sclerosis
APP Amyloid precursor protein
AS Angelman syndrome
ASD Autism spectrum disorder
CAs Cerebellar ataxia
CF Cystic fibrosis
CGM CG methylation
CH Congenital hypothyroidism
CIN Cervical intraepithelial neoplasia
CLL Chronic lymphocytic leukemia
CNV Copy number variation
MM Missense mutations
MPC Niemann-Pick disease type C
Pca Prostate cancer
RIP Repeat induced point mutation
SMS Smith-Magenis syndrome
SCA3 Spinocerebellar ataxia type 3
SNP Single nucleotide polymorphism
SPG Signaling pathways genes
TNR Trinucleotide repeat expansion
DLBCL Diffuse large B cell lymphoma
DMD Duchenne muscular dystrophy
DNA Deoxyribonucleic acid
Dup15q Duplication 15q11.2-13.1 syndrome
FRDA Friedreich’s ataxia
FXS Fragile X syndrome
GAT1 Glutaric acidemia type 1
HCC Hepatocellular carcinoma
HD Huntington’s disease
HNSCC Head and Neck Squamous Cell Carcinoma
HPV Human papillomavirus
MCI Mild Cognitive Impairment
MMA Methylmalonic acidemia
NT neurotypical
PWS Prader-Willi Syndrome
SCD Sickle Cell Disease
SCA1 Spinocerebellar ataxia type 1
SCNA Somatic copy number alterations
SNVs Single-nucleotide variants
T1D Type 1 diabetes
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